Enumeration of Bent Boolean Functions by Reconfigurable Computer J. L. Shafer ECE Department US Naval Academy Annapolis, MD 21402 U.S.A. shafer@usna.edu S. W. Schneider J. T. Butler Department of ECE Naval Postgraduate School Monterey, CA 93943 U.S.A. stu2k@msn.com/jbutler@nps.edu P. Stănică Department of Applied Math. Naval Postgraduate School Monterey, CA 93943 U.S.A. pstanica@nps.edu #### **Abstract** We show that there is significant benefit to using a reconfigurable computer to enumerate bent Boolean functions for cryptographic applications. Bent functions are rare, and the only known way to generate all bent functions is by a sieve technique in which many prospective functions are tested. The speed-up achieved depends on the number of variables n; for n=8, we show that the reconfigurable computer achieves better than a $60,000 \times$ speed-up over a conventional computer. Further, we introduce the transeunt triangle as a means to reduce the number of functions that must be considered. For n=6, this reduction is better than 500,000,000,000 to 1. Previously, the transeunt triangle had been used only in the design of exclusive OR logic circuits; it converts a truth table to the algebraic normal form. However, this fact has never been proven rigorously, and that shortcoming is removed in this paper. Our proof provides a practical benefit; it yields a new realization of the transeunt triangle that has less complexity and delay. Finally, we show computational results from a reconfigurable computer. #### 1. Introduction Shannon [18] introduced the concepts of confusion and diffusion as a fundamental technique to achieve security in cryptographic systems. The confusion principle is reflected in the nonlinearity of Boolean functions, since most linear systems are easily breakable. There are various criteria that imply nonlinearity, one of them being bentness. Bent functions were first introduced by Rothaus in 1976 [15], as functions having maximum distance away from the set of affine functions. Bent Boolean functions have the highest nonlinearity possible, which makes them useful in the design of block and stream ciphers. Maximum length sequences based on bent functions have cross-correlation and autocorrelation properties that are close to the ones of Gold and Kasami codes [12], which have applications in spread spectrum communication [6]. While we can mathematically define bent functions precisely, to generate them it is a different matter. One needs sophisticated mathematical (like invariant theory) and computational tools to list all n-variable bent functions (this has been achieved for $n \leq 8$). Some of these methods cannot be easily parallelized, and do not offer a significant improvement in a reconfigurable environment. Using the SRC-6 reconfigurable computer, we have tested millions of Boolean functions. Specific sets of Boolean functions were chosen based on their specific properties, including degree, homogeneity, and symmetry. These groups were evaluated for relationships between nonlinearity and specific properties. The objective is to find groups of Boolean functions that are rich in bent functions [1]. These groups, if small enough, can be tested exhaustively. Testing across the entire set of functions, even for small numbers of variables, e.g., n=6 or more, is infeasible because of the large number of functions. The use of the transeunt triangle enables functions to be generated easily in one form, converted to another form and then tested for certain characteristics. Without the transeunt triangle [2], [4], important groups of functions could not be tested efficiently. #### 2. Background and Definitions **Definition 2.1.** A **Boolean function** f in n variables is a map from the n-dimensional vector space $\mathbb{V}_n = \mathbb{F}_2^n$ to \mathbb{F}_2 , the two-element field. For a function f, let $f_0 = f(0,0,\ldots,0)$, $f_1 = f(0,0,\ldots,1)$, \ldots , and $f_{2^n-1} = f(1,1,\ldots,1)$. $TT = (f_0 f_1 \ldots f_{2^n-1})$ is the **truth table representation** of f. **Example 2.1.** $f = x_1x_2x_3x_4$ has the truth table representation TT = (000000000000001). g = | Report Documentation Page | | | | Form Approved
OMB No. 0704-0188 | | | | |--|--|--|--|--|---|--|--| | maintaining the data needed, and co-
including suggestions for reducing to | ompleting and reviewing the collect
this burden, to Washington Headqu
ald be aware that notwithstanding an | o average 1 hour per response, inclu-
ion of information. Send comments
arters Services, Directorate for Infor
ny other provision of law, no person | regarding this burden estimate of mation Operations and Reports | or any other aspect of th
, 1215 Jefferson Davis l | is collection of information,
Highway, Suite 1204, Arlington | | | | 1. REPORT DATE
MAY 2010 | | 2. REPORT TYPE | | 3. DATES COVE | RED | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT | NUMBER | | | | Enumeration of Bent Boolean Functions by Reconfigurab | | | e Computer | 5b. GRANT NUM | | | | | | | | | | LEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | , | | | | 5e. TASK NUMB | ER | | | | | | | | 5f. WORK UNIT NUMBER | | | | | Naval Postgraduate | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School, Department of Electrical and Computer Engineering, Monterey, CA, 93943 8. PERFORMING ORGANIZATION REPORT NUMBER | | | | | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | ONITOR'S REPORT | | | | 12. DISTRIBUTION/AVAIL Approved for publi | | ion unlimited. | | | | | | | 13. SUPPLEMENTARY NO | TES | | | | | | | | achieved depends o
achieves better than
triangle as a means
better than 500,000
exclusive OR logic
never been proven
practical benefit; it | ographic application a sieve technique in the number of van a 60,000? speed-uto reduce the number,000 to 1. Previously circuits; it converts rigorously, and that yields a new realization. | ns. Bent functions and many prosportions in the many prosportion in the many prosportions are acconventions that the transeunt trians in the many the transeunt trians in the many in the transeunt trians trianseunt tri | re rare, and the objective functions a we show that the al computer. Further must be consideringle had been usualgebraic normal noved in this paper at triangle that has | only known ware tested. The reconfigural ther, we introved the red. For n = 0 and the led only in the led form. However. Our proof | ay to generate all ne speed-up ple computer pduce the transeunt of, this reduction is e design of ver, this fact has a provides a | | | | | ATION OF. | | 17 I IMITATION OF | 10 MILMORD | 10° NAME OF | | | | 16. SECURITY CLASSIFICA
a. REPORT | b. ABSTRACT | c. THIS PAGE | 17. LIMITATION OF ABSTRACT | 18. NUMBER
OF PAGES
8 | 19a. NAME OF
RESPONSIBLE PERSON | | | unclassified unclassified unclassified $x_1x_2 \oplus x_3x_4$ has the truth table representation TT = (00010001000111110). (End of Example) **Definition 2.2.** A **linear** function is the constant 0 function or the exclusive-OR of one or more variables. An **affine** function is a linear function or the complement of a linear function. **Example 2.2.** There are 16 linear functions on 4 variables, 0, x_1 , x_2 , x_3 , x_4 , $x_1 \oplus x_2$, $x_1 \oplus x_3$, $x_1 \oplus x_4$, $x_2 \oplus x_3$, $x_2 \oplus x_4$, $x_3 \oplus x_4$, $x_1 \oplus x_2 \oplus x_3$, $x_1 \oplus x_2 \oplus x_4$, $x_1 \oplus x_3 \oplus x_4$, $x_2 \oplus x_3 \oplus x_4$, and $x_1 \oplus x_2 \oplus x_3 \oplus x_4$. These functions and their complements comprise the 32 4-variable affine functions. (End of Example) Affine functions, when used in encrypting a plaintext message, are susceptible to a linear attack. We seek functions that are as "far" away as possible from affine functions. **Definition 2.3.** The **Hamming distance** d(f,g) between two functions f and g is the number of places where their truth table representations differ. **Definition 2.4.** The **nonlinearity** $\mathbf{NL_f}$ of a function f is the minimum Hamming distance between f and an affine function. **Example 2.3.** $f = x_1x_2x_3x_4$ has nonlinearity 1, since converting the single 1 to a 0 in its truth table representation creates the truth table representation of the constant 0 function, which is affine. $g = x_1x_2 \oplus x_3x_4$ has a distance 6 or 10 from any affine function. Thus, its nonlinearity is 6. (End of Example) **Definition 2.5.** Let f be a Boolean function on n-variables, where n is even. f is a **bent function** if its nonlinearity is maximum among n-variable functions. **Example 2.4.** Rothaus [15] showed that bent functions have nonlinearity $2^{n-1}-2^{\frac{n}{2}-1}$. Thus, $f=x_1x_2x_3x_4$ is not bent $(NL_f=1)$, and $g=x_1x_2\oplus x_3x_4$ is bent $(NL_g=6)$. (End of Example) The property of "bentness" depends on the function's truth table representation. However, another representation provides alternative insight into bentness and allows a reduction in the number of functions that must be searched during bent function discovery. **Definition 2.6.** The algebraic normal form (ANF) of a function f is $f = \sum_{\mathbf{a} \in \mathbb{F}_2} c_{\mathbf{a}} x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$, where \sum is the exclusive OR sum, $\mathbf{a} = (a_1, a_2, \dots, a_n)$, $c_{\mathbf{a}}, a_i \in \mathbb{F}_2$, $x_i^0 = 1$, and $x_i^1 = x_i$. ANF $= (c_0 c_1 \dots c_{2^n-1})$ is the ANF representation of f. **Example 2.5.** $f = x_1x_2x_3x_4$ has the ANF $f = x_1x_2x_3x_4$ and the ANF representation ANF $= (0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0)$. $g = x_1x_2 \oplus x_3x_4$ has the $ANF \ g = x_1x_2 \oplus x_3x_4$ and the ANF representation $ANF = (0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$. (End of Example) **Definition 2.7.** The **degree of a product term** is the number of variables in that term. The **degree of a function** f is the maximum of the degrees among the product terms in the ANF of f. **Example 2.6.** $f = x_1x_2x_3x_4$ has degree 4 and $g = x_1x_2 \oplus x_3x_4$ has degree 2. (End of Example) **Definition 2.8.** Functions f and h belong to the same **affine class** if and only if $f = h \oplus a$, where a is an affine function. **Example 2.7.** $f = x_1x_2x_3x_4$, a non-bent function, belongs to an affine class of 32 functions. $g = x_1x_2 \oplus x_3x_4$, a bent function, belongs to an affine class of 32 functions. (End of Example) Certainly, each affine class contains the same number of functions, namely 2^{n+1} . Also, all functions in the same affine class as a non-affine function f have the same degree. **Definition 2.9.** A function f is **homogeneous** of degree d if and only if all terms in the ANF of f have degree d. **Example 2.8.** $f = x_1x_2x_3x_4$ is homogeneous of degree 4, and $g = x_1x_2 \oplus x_3x_4$ is homogeneous of degree 2. (End of Example) Xia, Seberry, Pieprzyk, and Charnes [20] considered homogeneity in the context of bent functions and showed the next result. **Theorem 2.1.** When n > 6, no n-variable homogeneous bent function has degree $\frac{n}{2}$. Because of $f=x_1x_2\oplus x_3x_4$, Theorem 2.1 does *not* hold for n=4. Qu, Seberry, and Pieprzyk [14] found 30 homogeneous 6-variable bent functions of degree 3, and so, Theorem 2.1 does not hold for n=6. Therefore, from [14], [20], for n>6, degree- $\frac{n}{2}$ n-variable bent functions exist, but none are homogeneous. More recently, Meng et al. [11] showed (purely combinatorially) that, for any nonnegative integer k, there exists a positive integer N, such that for $n\geq N$, there do not exist 2n variable homogeneous bent functions having degree n-k or more, where N is the least integer satisfying $2^{N-1} > {N+1 \choose 0} + {N+1 \choose 1} + \cdots + {N+1 \choose k+1}$. #### 3. Architecture of Bent Function Enumerator A reconfigurable computer allows one to adapt the architecture to the problem. Fig. 1 shows the architecture to enumerate bent functions based on the ANF of the tested functions. This and other variations yield the data we present later. In all cases, a counter was used to enumerate prospective functions. This is shown on the left. This is applied to a block labeled **Transeunt Triangle**. In this case, the counter enumerates ANFs; each bit of the counter determines the presence or absence of a term in the ANF. The transeunt triangle produces the corresponding truth table. This is then applied to a block that computes the function's nonlinearity, NL. If NL is maximum, the function is bent, and it is stored. Fig. 1. Bent function enumeration circuit In the SRC-6 reconfigurable computer, this circuit is implemented on a Xilinx Virtex2 Pro FPGA. It is pipelined and runs at 100 MHz. Specifically, one function is tested every clock cycle. We used this to enumerate all 6-variable bent functions [16]. If we had to enumerate all 2^{2^6} = 1.85×10^{19} 6-variable functions, this would take 5,849 years. However, Rothaus [15] showed that no bent function has degree greater than $\frac{n}{2}$. By eliminating functions with degree greater than $\frac{n}{2}$, it is only necessary to enumerate $2^{\binom{6}{3}+\binom{6}{2}+\binom{6}{1}+\binom{6}{0}}=2^{42}$ functions. A function in an affine class is bent if and only if all functions in the same affine class are bent. As a result, the number of bent functions is found by multiplying the number of affine classes by the number of functions in each class, $2^{\binom{6}{1} + \binom{6}{0}} = 2^7 = 128$. The number of affine classes with degree 3 or less is $2^{\binom{6}{3} + \binom{6}{2}} = 2^{35}$. At one class (function) per 100 MHz clock period, this enumeration takes only 5.7 minutes plus 0.5 minutes for data transfer for a total of 6.2 minutes. That is, by enumerating only the affine classes corresponding to functions of degree 3 or less, we achieve a reduction of $\frac{1}{2^{29}} = \frac{1}{536,870,912}$. However, this requires that we quickly convert between the ANF of a function and its truth table. For this, we need the Transeunt Triangle of Fig. 1, which we discuss in the next section. Fig. 2 shows the circuit that realizes the **Nonlinearity** block of Fig. 1. The truth table representation of the function f is applied on the left to 2^{n+1} sets of exclusive OR gates to compute 2^{n+1} distance vectors. The number of 1's in these vectors is the distance from f to each affine function. The **Ones_Count** circuit produces a binary number that is the distance between f and an affine function. Then, a **Minimum** circuit computes the overall minimum distance. This is the nonlinearity NL. Fig. 2. Nonlinearity circuit Both the **Ones_Count** and the **Minimum** circuit in Fig. 2 are trees. Fig. 3 shows that, in the case of the **Ones_Count** circuit, adders of various sizes form the circuit. Fig. 4 shows that, in the case of the **Minimum** circuit, two-input one-output minimum circuits are used. Fig. 3. Ones_Count circuit The part of the circuit in Fig. 1 that has the ANF as input and the "store" signal as output is combinational. However, its delay is larger than the SRC-6's 100 MHz clock period, and so, it is pipelined. For n=6, the pipeline stages are shown in Table 1. TABLE 1. Function of each pipeline stage | Stage | Circuit | Description | |-------|-----------------------------|-----------------------------------------| | 1 | Transeunt Triangle (Fig. 1) | | | 2 | EXOR gates (Fig. 2) | | | 3 | Ones_Count (Figs. 2 & 3) | 16 bits \Rightarrow 4 partial sums | | 4 | Ones_Count (Figs. 2 & 3) | 4 partial sums \Rightarrow 1 sum out | | 5 | Minimum (Figs. 2 & 4) | 128 words in \Rightarrow 32 words out | | 6 | Minimum (Figs. 2 & 4) | 32 words in \Rightarrow 8 words out | | 7 | Minimum (Figs. 2 & 4) | 8 words in \Rightarrow 2 words out | | 8 | Minimum (Figs. 2 & 4) | 2 words in \Rightarrow 1 word out | Fig. 4. Minimum circuit All of this is implemented on the FPGA and is described in Verilog. The counter that produces the ANF in Fig. 1 is implemented in C code that is compiled into a circuit on the FPGA. This and overhead circuitry require 6 more pipeline stages. Therefore, there are a total of 14 stages. As discussed earlier, there are $2^{35} = 3.4 \times 10^{10}$ iterations. Therefore, the 14-clock latency is miniscule in comparison to the total computation time. Even reducing the latency to 0 (no pipeline) would yield no perceptible reduction in computation time. The above discussion applies to the bent function enumeration that is described in Section 5.2. Other enumerations, such as the distribution of nonlinearity of 8-variable rotation symmetric Boolean functions described in Section 5.4, for example, correspond to somewhat different circuits (e.g. do not use the transeunt triangle). However, the same conclusion holds; the latency has an imperceptible affect on the computation time. An examination of Figs. 1-4 reveals why a reconfigurable computer is much more efficient than a conventional computer in computing bent Boolean functions. The **Ones_Count** circuit requires many small adders that can be used simultaneously. An FPGA can realize these, albeit at an increased delay, compared to a conventional computer. A conventional computer has only a few large wordwidth adders. The large wordwidth is not used efficiently. Similarly, the **Minimum** circuit requires many comparators that can be used simultaneously on an FPGA, but are much less abundant on a conventional computer. ## 4. The Transeunt Triangle #### 4.1. Definition Green [9] and others [2], [3], [4], [8], [19] propose the transeunt triangle as a means to derive the ANF from the truth table of a given function and, in so doing, produce compact exclusive OR sum-of-products circuits. In this paper, we show the benefit of the transeunt triangle in a computational application. Not only can the ANF be computed from the truth table, but the truth table can be computed from the ANF by using the same algorithm. This yields a significant computational advantage. **Definition 4.10.** The transeunt triangle* is a set of $2^{n}-1$ rows of adjacent 2-input 1-output exclusive-OR gates, where adjacent exclusive-OR gates connect to the same point. The input is a set of 2^n binary values that applies to the first (bottom) row of the triangle. That is, the inputs connect to a row of $2^n - 1$ adjacent exclusive-OR gates, whose outputs connect to a row of $2^n - 2$ adjacent exclusive-OR gates, etc.. The apex of the transeunt triangle is a row of just one exclusive-OR gate. The output of the transeunt triangle consists of the leftmost input bit and the outputs of the leftmost gates in each row. The inputs are indexed by the binary tuples 00...000, 00...001,00...010, ..., and 11...111 from left to right. Similarly, the outputs are indexed from the lower left corner to the apex by the binary tuples 00...000, 00...001, 00...010, \dots , and $11 \dots 111$. **Example 4.9.** Fig. 5a, shows the transeunt triangle for n = 3. In this case, there are eight inputs and eight outputs. TABLE 2. Example transeunt triangle in/out | $x_1x_2x_3 =$ | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |--------------------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----| | Output ANF Repr. = | (0 | 1 | 1 | 0 | 1 | 0 | 0 | 0) | | Output Expression | $x_3 \oplus x_2 \oplus x_1$ | | | | | | | | | Input TT Repr.= | (0 | 1 | 1 | 0 | 1 | 0 | 0 | 1) | | Input Expression | $\bar{x}_1\bar{x}_2x_3\vee\bar{x}_1x_2\bar{x}_3\vee x_1\bar{x}_2\bar{x}_3\vee x_1x_2x_3$ | | | | | | | | | Output TT Repr.= | (0 | 1 | 1 | 0 | 1 | 0 | 0 | 0) | | Output Expression | $\bar{x}_1\bar{x}_2x_3\vee\bar{x}_1x_2\bar{x}_3\vee x_1\bar{x}_2\bar{x}_3$ | | | | | | | | | Input ANF Repr. = | (0 | 1 | 1 | 0 | 1 | 0 | 0 | 1) | | Input Expression | $x_3 \oplus x_2 \oplus x_1 \oplus x_1 x_2 x_3$ | | | | | | | | Table 2 shows an example of the output values for given input values. Specifically, if the input truth table representation, TT = (01101001), which corresponds to the minterm canonical form $\bar{x}_1\bar{x}_2x_3 \vee \bar{x}_1x_2\bar{x}_3 \vee x_1\bar{x}_2\bar{x}_3 \vee x_1x_2x_3$, is applied to the bottom, then the left side of the transeunt triangle corresponds to the output ANF representation of this function, ANF = (01101000), which is $x_3 \oplus x_2 \oplus x_1$. Conversely, Table 2 also shows that if the input ANF representation, ANF = (01101001), is applied to the bottom, then the truth table representation of that function, TT = (01101000), is produced on the left side of the transeunt triangle. (End of Example) ^{*.} Green [9] and others [4] define the transeunt triangle to be the logic values at the inputs and outputs of the 2-input 1-output exclusive-OR gates. We define it to be a circuit of exclusive-OR gates. ### 4.2. The Transeunt Triangle Proof Fig. 5. Comparing the full and reduced transeunt triangle for n=3. Green [9] did not prove that the transeunt triangle converts a truth table representation to an ANF representation. We do so now. The following result from [10, p. 68] will be used in our proof. **Theorem 4.2** (Lucas). Let p be a prime number, and two integers represented in base p, namely $n = n_s p^s + \cdots + n_1 p^1 + n_0$ and $r = r_s p^s + \cdots + r_1 p^1 + r_0$, with $0 \le n_i, r_i \le p - 1$. Then, $\binom{n}{r} \equiv \binom{n_s}{r_s} \cdots \binom{n_1}{r_1} \binom{n_0}{r_0} \pmod{p}$. The main result of this section is as follows. **Theorem 4.3.** If the input to the transeunt triangle is the truth table representation of an n-variable function f, then the output is the ANF representation of f. Conversely, if the input to the transeunt triangle is the ANF representation of an n-variable function f, then the output is the truth table representation of f. **Proof:** The second statement follows from the first because the logic values in the transeunt triangle are unchanged if all exclusive-OR gates are rotated 120 degrees clockwise (thus exchanging the input with the output). We prove the first statement by induction. Fig. 6a shows that the first statement is true for all functions on n=1 variable. Assume the first statement is true for n, and consider an n+1-variable transeunt triangle. Fig. 6b shows that there are two n-variable transeunt triangles embedded in this transeunt triangle. Applied as an input to the lower one is $f_{0\to x_1}$, shown as f_0 in Fig. 6b. By the inductive assumption, the output of this transeunt triangle is the ANF representation of $f_{0\to x_1}$. We now show that $f_{0\to x_1} \oplus f_{1\to x_1}$ is applied as an input to the upper transeunt triangle. Let α be an assignment of values to x_2, x_3, \ldots , and x_n . Then, each input to the upper triangle is driven by a $(2^{n-1}+1)\times(2^{n-1}+1)\times(2^{n-1}+1)$ Fig. 6. Transeunt triangle composition transeunt triangle whose inputs assignments range from 0α through 1α . This is shown in Fig. 6b as a dotted-line triangle. For example, the left input is driven by a transeunt triangle whose $2^{n-1}+1$ inputs are $00\dots000,\,00\dots001,\,\ldots,\,01\dots111,\,$ and $10\dots000\,$ where $\alpha=0\dots000.\,$ Consider one triangle, and index its inputs by $i,\,$ for $0\le i\le 2^{n-1}.\,$ The output of this triangle is the exclusive-OR of some number of its inputs. The number of times an assignment appears in the exclusive-OR expression of the inputs is the number of paths from that input to the output. This is just $\binom{2^{n-1}}{i}$. For i=0 and $i=2^{n-1},\,\binom{2^{n-1}}{i}=1;\,$ i.e. there is exactly one path to the triangle's output, and these two inputs appear once in the exclusive-OR expression. Consider $i,\,$ such that $0< i< 2^{n-1}.\,$ We use Theorem 4.2. Since $n=2^{k-1}$, $n_i=0$ for all i, except that $n_{k-1}=1$. For $0 < r < n=2^{k-1}$, there is at least one j such that $\binom{n_j}{r_j} = \binom{0}{1} = 0$. Thus, for $0 < r < n=2^{k-1}$, $\binom{2^{k-1}}{r} \equiv 0 \pmod 2$. Thus, the number of paths from any assignment of values in the truth table input to the root is even. It follows that the only terms that occur are 0α and 1α . We can conclude, therefore, that the input to the upper transeunt triangle in Fig. 6b is the truth table representation of $f_{0 \to x_1} \oplus f_{1 \to x_1}$, shown in this figure as $f_0 \oplus f_1$. By the inductive hypothesis, the output of the upper transeunt triangle is the ANF representation of $f_{0\to x_1}\oplus f_{1\to x_1}$. The input to the n+1-variable transeunt triangle in Fig. 6b is the truth table representation of $f_{0\to x_1}\bar{x}_1\vee f_{1\to x_1}x_1$. The output is the ANF representation of $f_{0\to x_1}\oplus (f_{0\to x_1}\oplus f_{1\to x_1})x_1$, which represents the same function. ### 4.3. Reduced Transeunt Triangle We note that, in Fig. 6b, only one of the dotted-line triangles embeds a transeunt triangle (left dotted-line triangle). That is, all but one of these triangles can be replaced by a single 2-input 1-output exclusive-OR gate. Doing this yields the *reduced transeunt triangle*. Fig. 5b shows the reduced transeunt triangle for n=3. In this case, only 12 2-input 1-output exclusive-OR gates are needed, compared to 28 gates for the full transeunt triangle. **Definition 4.11.** A transeunt triangle is **balanced** if, for every output f, the path length to all inputs on which f depends is the same. **Example 4.10.** Both the full and reduced transeunt triangles are balanced. A transeunt triangle in which all outputs are driven by a cascade of 2-input 1-output exclusive OR gates is not a balanced transeunt triangle. **Lemma 4.1.** The full transeunt triangle for n-variable functions requires $(2^n-1)2^{n-1}$ 2-input 1-output exclusive-OR gates, while the reduced transeunt triangle requires $n2^{n-1}$, which is the smallest possible among all balanced transeunt triangles using only 2-input 1-output exclusive-OR gates. **Proof:** The number of gates in the full transeunt triangle is $f_n = 1 + 2 + 3 + \cdots + 2^n - 1 = \frac{2^n(2^n-1)}{2}$. The number of gates r_n in the reduced transeunt triangle is given by the recurrence relation $r_n = 2r_{n-1} + 2^{n-1}$, with initial condition $r_1 = 1$. Solving yields $r_n = n2^{n-1}$. The fact that this is the smallest possible can be seen as follows. Order the inputs so that they are in lexicographical order, 00...00, 00...01, ..., and 11...11, and construct a minimal balanced transeunt triangle so that the outputs are in lexicographical order. Each output bit indexed by $o_1 o_2 \dots o_n$ is the exclusive OR of all input bits indexed by $i_1, i_2, \dots i_n$, such that $i_i \leq o_i$. For example, output bit 00...00 is driven by input bit 00...00, and no gate is needed. Output bit 00...01 is driven by a gate with input bits 00...00 and 00...01, and one gate is needed. Specifically, each output bit is the root of a full binary tree, where the leaves are driven by input bits whose index is the same as the output node's index where some 1's may be changed to 0's. Input bit 00...00 is in the binary tree of every output. Let $wt(o_1o_2...o_n)$ be the Hamming weight of $o_1 o_2 \dots o_n$ (the number of o_j 's that are 1). Consider the number of nodes added to the transeunt triangle constructed so far by output bit $o_1 o_2 \dots o_n$. The fewest nodes added are those in the binary tree associated with output bit $o_1 o_2 \dots o_n$ that are along a path from the output bit $o_1 o_2 \dots o_n$ to the input bit $i_1 i_2 \dots i_n$, such that $i_j = o_j$, for all $1 \le j \le n$. None of these nodes are part of the transeunt triangle constructed so far. Because the transeunt triangle is balanced, there are $wt(o_1 o_2 \dots o_n)$ added nodes. Because of the lexicographical order of the inputs, all arcs from these nodes must go toward that part of the transeunt triangle constructed so far. It follows that the number of gates in a balanced transeunt triangle is bounded below by the total number of 1's among all binary n-tuples, which is $n2^{n-1}$. In addition, the reduced transeunt triangle yields smaller delay than the full transeunt triangle. It is straightforward to show the following. **Lemma 4.2.** The full transeunt triangle for n-variable functions requires $2^n - 1$ gate delays, while the reduced transeunt triangle requires n gate delays, where one gate delay is the delay associated with a 2-input 1-output exclusive-OR gate. Since the full and reduced transeunt triangles are balanced, the delay to an output from any of the inputs is identical. ### 5. Experimental Results ## 5.1. Speed-up Achievable by the Reconfigurable Computer We compare the computation time required by an SRC-6 reconfigurable computer with the time required by a conventional computer. In our case, this is an Intel Xeon processor running at 2.8 GHz., which is one of two conventional microprocessors associated with the SRC-6. The program, written in C, computes the nonlinearity of *n*-variable functions, forming the distribution of functions to nonlinearity. Similarly, the time it takes to do the same calculation on the SRC-6 can be calculated since the throughput is one function per clock period. The results are shown in Table 3. TABLE 3. Speed-up obtained by the SRC-6 reconfigurable computer | n | PC Compute | SRC-6 Compute | Speed-up | |---|-------------------------------------|-------------------------------------|-----------| | | Time | Time | Factor | | | (@2.8 GHz.) | (@100 MHz) | | | 2 | 6.38 μ sec. | $0.16~\mu sec.$ | 39.9 × | | 3 | 457.0 μ sec. | $2.56~\mu \text{sec}$. | 178.5 × | | 4 | 0.388 sec. | 655.4 μ sec. | 592.0 × | | 5 | 25.338 hours | 42.9 sec. | 2,126.3 × | | 6 | 39,807,788 years | 5,840 years | 6,805.9 × | | 7 | $2.05 \times 10^{27} \text{ years}$ | $1.08 \times 10^{23} \text{ years}$ | 19,005 × | | 8 | 2.28×10^{66} years | $3.67 \times 10^{61} \text{ years}$ | 62,111 × | Speed-up factors range from $39.9\times$ for n=2 to $62,111\times$ for n=8. Note that the speed-up factor should nearly quadruple for each increase in n by 1. On the PC, the computation time doubles for each increase in n because the number of affine functions doubles. Similarly, the number of Ones_Count operations also doubles. However, on the SRC-6, the circuit size increases; the throughput of one function per clock cycle remains the same. The computation times for $2 \le n \le 5$ shown in Table 3 were achieved by programs that enumerated all 2^{2^n} n-variable functions. The computation times for $6 \le n \le 8$ for the PC were obtained by running the C program over a fraction of the functions and then prorating to compute the time had all functions been enumerated. Although the computation time on the SRC-6 for these values of n is much less, it is still excessive, and this computation could not be done. However, the speed-up applies when we enumerate a sufficiently small subset of all functions. For example, we enumerated all 6-variable functions with degree 3 or less and, in so doing, enumerated all bent functions [16] using the theorem by Rothaus [15]. As discussed in Section 3, this computation required 6.2 minutes. Had this computation been done on the PC, it would have taken $6805.9 \times (5.7 \text{ mins.})$ longer or 27 days. We achieved the 62,111 speed-up associated with n=8 in Table 3 in computing the distribution of rotation symmetric functions, as described in Section 5.4. #### 5.2. Number of 6-Variable Bent Functions The computation described in the previous section verified Preneel's [13] result that there are 5,425,430,528 bent functions on 6 variables. We showed further, that 1,777,664 of these functions or 0.03% have degree 2. All of the remaining have degree 3. Table 4 shows the resource usage on the Xilinx Virtex2 Pro. TABLE 4. Resources used to compute the nonlinearity of 6-variable functions of degree 2 and 3 | Number of | Number/Total | Percentage | | |------------------|--------------|------------|--| | Slice Flip-Flops | 6,522/88,192 | 7% | | | 4-Input LUTs | 8,997/88,192 | 10% | | | Occupied Slices | 6,450/44,096 | 14% | | ## **5.3.** Nonlinearity of 6-Variable Homogeneous Boolean Functions In the search for trends in Bent function properties, it is useful to examine the nonlinearity distribution of homogeneous Boolean functions. There are $\sum_{k=0}^6 (2^{\binom{6}{k}} - 1) = 1,114,237$ 6-variable homogeneous functions. Fig. 7 shows the distribution of 6-variable homogeneous functions to nonlinearity and degree, as computed on the FPGA. The vertical axis shows the \log_2 number of functions. For example, there are 63 homogeneous functions of nonlinearity 0 and degree 1; these are the linear functions. The bent functions have nonlinearity 28, and Fig. 7 shows there are two different degrees. 13,888 have degree 2 and 30 have degree 3. The next largest nonlinearity is 23, and again, functions exist with only degrees 2 and 3. For degrees 3, 4, and 5, there is bell-like distribution across nonlinearity. This information, when combined with the same data for higher n, could lead to further reduction in the number of test functions resulting in the ability to find more bent functions without increasing computation time. Fig. 7. Distribution of homogeneous 6-variable functions by nonlinearity and degree Table 5 shows the resource usage on the Xilinx Virtex2 Pro. TABLE 5. Resources used to compute the nonlinearity of 6-variable homogeneous functions | Number of | Number/Total | Percentage | |------------------|---------------|------------| | Slice Flip-Flops | 7,959/88,192 | 9% | | 4-Input LUTs | 12,335/88,192 | 13% | | Occupied Slices | 8,724/44,096 | 19% | # 5.4. Nonlinearity of 8-Variable Rotation Symmetric Boolean Functions **Definition 5.12.** A function f is rotation symmetric if and only if, for any $(x_1, x_2, \ldots, x_n) \in \mathbb{F}_2^n$, $$f(x_1, x_2, x_3, \dots, x_n) = f(x_n, x_1, x_2, \dots x_{n-1}).$$ In a rotation symmetric function, "rotating" an assignment of values to the variables leaves the function unchanged. Rotation symmetric functions have interesting properties [6] and there is evidence to suggest that this class is rich in bent functions. It is conjectured [7] that the weight and nonlinearity of a third degree homogeneous rotation symmetric function are identical. Fig. 8 shows the distribution of 8-variable rotation symmetric functions to nonlinearity. This shows that more rotation symmetric functions have nonlinearity around 110 than other values. Relatively few have low nonlinearity (0-75) or high nonlinearity (>113). This distribution resembles the distribution of nonlinearity to all functions, which is known only for n=4 [1]. Table 6 shows the resource usage on the Xilinx Virtex2 Pro. Fig. 8. Distribution of 8-variable rotation symmetric functions by nonlinearity TABLE 6. Resources used to compute the nonlinearity of 8-variable rotation symmetric functions | Number of | Number/Total | Percentage | | |------------------|--------------|------------|--| | Slice Flip-Flops | 9,531/88,192 | 10% | | | 4-Input LUTs | 8,850/88,192 | 10% | | | Occupied Slices | 8,540/44,096 | 19% | | ## 6. Concluding Remarks We show that the reconfigurable computer is an effective research tool in bent function discovery. Because we adapt the architecture to the problem, we achieve significant efficiencies. Indeed, we show that a reconfigurable computer can achieve better than a 60,000× speed-up over a conventional computer for 8-variable functions. The implementation of the transeunt triangle is beneficial in reducing the number of functions through which we must sieve. We show that the reduction is better than 500,000,000 to 1 for 6-variable functions. Although the transformation produced by the transeunt triangle is generally accepted as correct, no proof is known. We provide such a proof. This proof yields the reduced transeunt triangle, which produces the identical transformation of the full transeunt triangle, but with significantly fewer gates and less delay. We show examples of results obtained from this tool. For other results, see Schneider [16] and Shafer [17]. Nonlinearity is only one type of cryptographic property. Other types include strict avalanche criterion, propagation criterion, correlation immunity, and algebraic immunity. There is significant promise in exploiting the efficiencies of a reconfigurable computer to make new discoveries in these important topics. ### 7. Acknowledgments We thank 1) the National Security Agency for support for this project, 2) Daniel P. Zulaica for technical support for the SRC-6, 3) Christopher D. Johnson for comments that improved this paper, and 4) four reviewers for suggestions for improvement. #### References - J. T. Butler and T. Sasao, "Bent functions and their relation to switching circuit theory – A tutorial", *Proc. of the Reed-Muller* Workshop 2009, May 23-24, 2009, Naha, Okinawa, Japan, 127–136. - [2] J. T. Butler, G. W. Dueck, S. N. Yanushkevich, and V. P. Shmerko, "On the use of transeunt triangles to synthesize fixed-polarity Reed-Muller expansions of symmetric functions", *Proc. of the Reed-Muller Workshop* 2009, May 23-24, 2009, Naha, Okinawa, Japan, 119–126. - [3] J. T. Butler, G. W. Dueck, S. Yanushkevich, and V. P. Shmerko, "Comments on Sympathy: Fast Exact Minimization of Fixed Polarity Reed-Muller Expansion for Symmetric Functions", *IEEE Trans. on Computer-Aided Design* Vol. 19, No. 11 (2000), 1386–1388. - [4] J. T. Butler, G. W. Dueck, S. N. Yanushkevich, and V. P. Shmerko, "On the number of generators for transeunt triangles", *Discrete Applied Math.*, Vol. 108, Issue 3 (2001), 309–316. - [5] A. Canteaut and M. Videau, "Symmetric Boolean functions", *IEEE Trans. Inf. Theory*, Vol. 51, no. 8 (2005), 2791–2811. - [6] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Academic Press, San Diego, CA, 2009. - [7] T. W. Cusick and P. Stănică, "Fast evaluation, weight, and nonlinearity of rotation-symmetric functions", *Discrete Math.*, Vol. 258 (2002), 289–301. - [8] G. W. Dueck, D. Maslov, J. T. Butler, V. P. Shmerko, and S. N. Yanushkevich, "A method to find the best mixed polarity Reed-Muller expression using transeunt triangle", *Proc. of the 5th Int. Reed-Muller Workshop (RM* 2001), Starkville, MA, USA, 82–92, August 2001. - [9] D. H. Green, Modern Logic Design, Addison-Wesley Publishing Company, 1986. - [10] D. H. Knuth, *The Art of Computer Programming*, 2nd Ed., Addison-Wesley Publishing Co., Reading, Menlo Park, London, Amsterdam, Don Mills, Sydney, 1973. - [11] Q. Meng, H. Zhang, M. Yang, and J. Cui, "On the degree of homogeneous bent functions", *Discrete Applied Math.*, Vol. 155, Issue 55 (2006), 665–669. - [12] J. Olsen, R. Scholtz, and L. Welch, "Bent-Function Sequences", IEEE Trans. Inf. Theory Vol. 28, No. 6, (1982), 858-864. - [13] B. Preneel, Analysis and Design of Cryptographic Hash Functions, Ph.D. Thesis, Katholieke Universiteit Leuven, K. Mercierlaan 94, 3001 Leuven, Belguim, 1993. - [14] C. Qu, J. Seberry, and J. Pieprzyk, "Homogeneous bent functions", Discrete Applied Math., Vol. 102 (2000), 133–139. - [15] O. S. Rothaus, "On 'bent' functions", J. Combinatorial Theory, Ser. A, Vol. 20 (1976), 300–305. - [16] S. W. Schneider, "Finding bent functions using genetic algorithms", M.S. Thesis, Naval Postgraduate School, Monterey, CA, September 2000 - [17] J. L. Shafer, "An analysis of bent function properties using the transeunt triangle and the SRC-6 reconfigurable computer", M.S. Thesis, Naval Postgraduate School, Monterey, CA, September 2009. - [18] C. E. Shannon, "Communication theory of secrecy systems", Bell System Tech. J. 28 (1949), 656–715. - [19] V. P. Suprun, "Fixed polarity Reed-Muller expressions of symmetric Boolean functions", Proc. IFIP WG 10.5 Workshop on Application of the Reed-Muller Expansions in Circuit Design (1995), 246–249. - [20] T. Xia, J. Seberry, J. Pieprzyk, and C. Charnes, "Homogeneous bent functions of degree n in 2n variables do not exist for n>3", Discrete Applied Math., Vol. 142 (2004), 127–132.